AUDL 4007 Auditory Perception

Week 21/2

Mathematical prelude: Adding up levels

You know about adding up waves, e.g. from two loudspeakers

But how do you get the total rms from the rms values of two signals that are added?

Conclusion: you don't add them! (the squaring for rms is non-linear) 3

Powers & intensities do add

2

4

power/intensity ~ voltage²/pressure²

no need to worry about constant of proportionality

 $\sqrt{0.7072^2 + 1^2} = \sqrt{0.5 + 1.0} = \sqrt{1.5} = 1.22$

This holds true as long as the two signals do not overlap in spectrum

What can happen when you add a 1-V 1-kHz sine wave to another 1-V 1-kHz sinusoid?

Interlude: signal-to-noise ratio (SNR)

- Literally ...
 - rms level of signal/rms level of noise
- usually expressed in dB
 - 20 log₁₀(signal/noise)
- Nothing implied about the form of the signal or noise
 - the signal is what you are interested in (e.g., a tone, a band of noise, a word, a sentence)
 - the noise is everything else (*e.g.*, a tone, car noise, speech from other people)

9

AUDL 4007 Auditory Perception

Week 2

Psychoacoustic reflections of frequency selectivity

Various SNRs for a sentence in speech-shaped noise

SNR of +40 dB? SNR of -40 dB? SNR of 0 dB?

Intelligibility for a particular SNR depends on many factors

SNR of -10 dB for speech-shaped noise

SNR of -10 dB for a single male talker in the background

10

Auditory Nerve Structure and Function

The auditory periphery as a signal processor

The frequency specificity of masking

- Listen for a set of three pulsing tones (the *signal* or *probe*).
- These will alternate with masking noises that occur twice each, and change through the series.
- If two masking noises in a row sound identical, then you can't hear the probe tone — it has been *masked*.
- When is the tone masked, and when not?

Masking experiments

- Listen for a probe (typically a sinusoid) in a background of a masker with a variety of spectral shapes (typically a noise).
- Assume: A listener has independent access to, and can 'listen' selectively to the output of an individual auditory filter – the one that will give best performance.
 - the probe frequency controls the centre frequency of the auditory filter that is attended to
- Assume: Only noise that passes through the same filter as the sinusoid can mask it.
- Assume: Only the 'place' principle applies no temporal information.
- The power spectrum model of masking

Of mostly historical interest: Band-widening

frequency \rightarrow

14

The band-widening experiment

- Measure the threshold of a sinusoid in the centre of a band of noise
- Vary the width of the band of noise
- Assuming auditory filters can be thought of as ideal bandpass filters, how should the thresholds for the probe change as bandwidth increases?

Simplify by assuming an ideal (rectangular) auditory filter

The notion of the *critical band* as seen in band-widening experiments

FIG. 3.1 The threshold of a 2000 Hz sinusoidal signal plotted as a function of the bandwidth of a noise masker centred at 2000 Hz. Notice that the threshold of the signal at first increases with increasing masker bandwidth and then remains constant. From Schooneveldt and Moore (1989).

The masked audiogram

For a fixed narrow-band masker, determine the change in threshold for sinusoidal probes at a wide variety of frequencies.

Excitation pattern (spectrum) or tuning curve (frequency response)?

17

From Moore (1997)

Low masks high, but not v.v. Excitation patterns

Low masks high, but not v.v. Frequency responses

Main points

- The "filters" through which we listen to sounds are the filters established in the inner ear, in SNHL as well as normal hearing.
 - supported by the similarity between physiological and behavioural measurements
- The width of the auditory filter is an important determinant in how well we can hear sounds in noise (which is almost always).
- People will use whatever information is available to them, even when the task is as trivial as detecting a tone.